Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Zu-Zhi Zhao, Lin Li* and Jie-Ying Wu

Deparment of Chemistry, Anhui University, Hefei 230039, People's Republic of China

Correspondence e-mail: ahu_linli@163.com

## Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
$R$ factor $=0.035$
$w R$ factor $=0.089$
Data-to-parameter ratio $=14.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## (E)-1-(4-Bromobenzylidene)ferrocene

In the title compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Br}\right)\right]$, the benzene ring makes a dihedral angle of $14.1(2)^{\circ}$ with the substituted cyclopentadienyl ring. The bond distances imply that there is no conjugation between the cyclopentadienyl and benzene rings.

## Comment

The chemistry of ferrocene has received much attention because of its applications in many fields, such as in catalysis (Yang et al., 2002) and non-linear optical (NLO) materials (Long, 1995; Roberto et al., 2000). As part of our continuing studies on non-linear optical materials, we present here the structure of the title compound, (I).

(I)

The molecular structure of (I) is shown in Fig. 1. The two cyclopentadienyl rings are nearly parallel [dihedral angle $0.9(4)^{\circ}$ ] and exhibit an eclipsed conformation. The C1-C11 and $\mathrm{C} 12-\mathrm{C} 13$ bond distances (Table 1) are close to the typical single $\mathrm{C}-\mathrm{C}$ bond distance of $1.48 \AA$ for $s p^{2}$-hybridized C atoms, and the $\mathrm{C} 11=\mathrm{C} 12$ bond distance is identical to the typical $\mathrm{C}=\mathrm{C}$ double-bond distance (Morrison et al., 1973). This suggests that there is no conjugation between the cyclopentadienyl and benzene rings. The benzene ring makes a dihedral angle of $14.1(2)^{\circ}$ with the C1-containing cyclopentadienyl ring.

## Experimental

For the preparation of (4-bromobenzyl)terphenylphosphonium bromide, a flask was charged with a mixture 1-bromo-4-methylbenzene ( $8.55 \mathrm{~g}, 50 \mathrm{mmol}$ ), NBS ( N -bromosuccinimide) ( 9.2 g , 51 mmol ) and a catalytic amount of benzoyl peroxide (BPO), which was vigorously stirred in tetrachloromethane ( 150 ml ). The mixture was refluxed for 5 h . When the reaction was complete, it was cooled to room temperature and was extracted with chloroform several times. The organic layer was washed with water and saturated brine. The organic extracts were dried over $\mathrm{MgSO}_{4}$. After removing the

## metal-organic papers

solvent under reduced pressure, the residue was collected and dried in a vacuum. This intermediate was added to triphenylphosphine ( $13.1 \mathrm{~g}, 50 \mathrm{mmol}$ ) in benzene ( 150 ml ), and the resulting solution was refluxed for 4 h . After cooling to room temperature, a white solid was collected by filtration and air-dried to give 16.1 g (yield: $63 \%$ ).

For the preparation of ( $E$ )-1-(4-bromobenzylidene)ferrocene, ferrocenealdehyde ( $3.2 \mathrm{~g}, \quad 15 \mathrm{mmol}$ ), (4-bromobenzyl)terphenylphosphonium bromide ( $7.9 \mathrm{~g}, 15 \mathrm{mmol}$ ) and powdered $\mathrm{NaOH}(2.4 \mathrm{~g}$, 60 mmol ) were crushed together with a pestle and mortar for 2 h (Yang et al., 2005). The mixture was extracted with dichloromethane three times. The organic layer was washed successively with water and saturated brine. The organic extracts were dried over $\mathrm{MgSO}_{4}$. After removing the solvent under reduced pressure, the residue was purified by flash column chromatography and gave the product as a red solid. Single crystals of (I) were obtained by slow evaporation of a dichloromethane/2-propanol solution.

## Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Br}\right)\right]$
$M_{r}=367.06$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.0159(14) \AA$
$b=11.014$ (3) $\AA$
$c=22.347$ (5) $\AA$
$V=1480.7$ (6) $\AA^{3}$
$Z=4$
$D_{x}=1.647 \mathrm{Mg} \mathrm{m}^{-3}$

## Data collection

Bruker SMART CCD area-detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.185, T_{\text {max }}=0.196$
7751 measured reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$\omega R\left(F^{2}\right)=0.089$
$S=1.00$
2601 reflections
181 parameters
H -atom parameters constrained

> Mo $K \alpha$ radiation Cell parameters from 2888 $\quad$ reflections $\theta=2.6-23.8^{\circ}$ $\begin{aligned} & \mu=3.70 \mathrm{~mm}^{-1} \\ & T=273(2) \mathrm{K} \\ & \text { Block, red } \\ & 0.47 \times 0.45 \times 0.44 \mathrm{~mm}\end{aligned}$

> 2601 independent reflections
> 2219 reflections with $I>2 \sigma(I)$
> $R_{\mathrm{int}}=0.038$
> $\theta_{\max }=25.0^{\circ}$
> $h=-7 \rightarrow 7$
> $k=-13 \rightarrow 13$
> $l=-19 \rightarrow 26$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0513 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.60 \mathrm{e}_{\circ}^{-3} \\
& \Delta \rho_{\min }=-0.42 \text { e } \AA^{-3} \\
& \text { Absolute structure: Flack }(1983), \\
& \quad \text { 1064 Friedel Pairs } \\
& \text { Flack parameter: }-0.005(17)
\end{aligned}
$$

Table 1
Selected bond lengths ( $\AA$ ).

| $\mathrm{Br} 1-\mathrm{C} 16$ | $1.901(5)$ | $\mathrm{C} 11-\mathrm{C} 12$ | $1.317(7)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{C} 1-\mathrm{C} 11$ | $1.466(7)$ | $\mathrm{C} 12-\mathrm{C} 13$ | $1.452(7)$ |



Figure 1
The molecular structure of (I), showing $50 \%$ probability displacement ellipsoids (arbitrary spheres for H atoms).

H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.93 \AA$ ) and refined in the riding mode $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

We thank the National Natural Science Foundation of China (Nos. 50532030 and 50335050) and the Foundation for Persons with Ability in Anhui Province, China (No. 2002Z021). We thank Professor D.-Q. Wang of Liaocheng University for his assistance in the X-ray structure determination.

## References

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Long, N. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 21-75.
Morrison, R. T. \& Boyd, R. N. (1973). Organic Chemistry, 3rd ed. Boston: Allyn \& Bacon.
Roberto, D., Ugo, R., Cariati, S. B. E. \& Cariati, F. (2000). Organometallics, 19, 1775-1788.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Yang, J.-X., Tao, X.-T., Yuan, C.-X., Yan, Y.-X., Wang, L., Liu, Z., Ren, Y. \& Jiang, M.-H. (2005). J. Am. Chem. Soc. 127, 3278-3279.
Yang, J.-X., Tian, Y.-P., Liu, Q.-L., Xie, Y.-S. \& Fun, H.-K. (2002). Acta Cryst. C58, m43-m44.


[^0]:    © 2006 International Union of Crystallography All rights reserved

